Immobilization of Methyl Orange and Methylene Blue within the Matrix of Charge-Imbalanced Amphoteric Nanogels and Study of Dye Release Kinetics as a Function of Temperature and Ionic Strength

Author:

Ayazbayeva A.Ye.ORCID, ,Nauryzova S.Z.ORCID,Aseyev V.O.ORCID,Shakhvorostov A.V.ORCID, , , ,

Abstract

Cross-linked polyampholyte nanogels consisting of neutral N-isopropylacrylamide (NIPAM), negatively charged sodium salt of 2-acrylamido-2-methylpropanesulfonate (AMPS), and positively charged (3-acryl-amidopropyltrimethylammonium chloride (APTAC) monomers were synthesized via conventional redox ini-tiated free radical copolymerization using N,N-methylenebis(acrylamide) (MBAA) as a cross-linking agent. The resulting nanogels were characterized by means of FTIR and 1H NMR spectroscopy, dynamic light scat-tering (DLS) and zeta-potential measurements. Surface morphology was analyzed using scanning electron microscopy. Due to the presence of thermally responsive NIPAM units and varying molar ratios of anionic (AMPS) and cationic (APTAC) units, the resulting nanogels were responsive to multiple stimuli in aqueous media and can be used for controlled delivery of dyes. Thus, the NIPAM90-APTAC7.5-AMPS2.5 nanogel with an excess of the cationic units was chosen for immobilization of the anionic dye, methyl orange (MO), whereas the NIPAM90-APTAC2.5-AMPS7.5 nanogel with an excess of the anionic units was chosen for immo-bilization of the cationic dye, methylene blue (MB). The release kinetics of the dyes from the nanogel was studied depending on the phase transition temperature and the salt content. Mechanism of the dye release from the nanogel matrix was determined using the Ritger-Peppas equation. Disappearance of the ionic con-tacts between the charged groups of the nanogels and the ionic dyes was suggested to be the main reason for the diffusion of the dyes through the dialysis membrane into the external solution.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3