Effect of Nickel Nanopowder on the Thermal Degradation of Coal Tar Distillate

Author:

Kim S.V.ORCID, ,Baikenov M.I.ORCID,Ibishev K.S.ORCID,Meiramov M.G.ORCID,Ma Fengyun,Khamitova T.O.ORCID, , , , ,

Abstract

Regularities of influence of nickel nanopowder on the thermal degradation of coal tar distillate were deter-mined using model-free Kissinger, Flynn-Wall-Ozawa and model-fitting Coats-Redfern methods. Coal tar distillate with a boiling point of <350 °C was obtained by simple distillation of primary coal tar from the Shubarkol deposit. Nickel nanopowder was used as a catalyst and was added to coal tar distillate in a quantity of 1 % of the mass of the distillate and then the process of thermal degradation of coal tar distillate was con-ducted at heating rates 5, 10 and 20 °C/min in an inert gas medium. Nickel powder was obtained by high-voltage discharge impact on the dc electrolysis. X-ray diffraction (XRD) analysis showed that the obtained nickel powder has face-centered cubic structure and the average crystallite size calculated by the Scherrer equation was ~ 34 nm. Calculations of activation energy were performed via processing of thermogravimetric data. The Kissinger method showed that the activation energy value decreases from 145.19 kJ/mol to 43.65 kJ/mol, by the Flynn-Wall-Ozawa (FWO) method the value decreases from 152.82 kJ/mol to 51.65 kJ/mol, and by the Coats-Redfern method the value decreases from 143.38 kJ/mol to 52.64 kJ/mol. Ap-plicability of these methods is ensured by the high values of correlation coefficients.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3