Phase composition and morphology of nanostructured coatings deposited by laser dispersion of a mixture of polyethylene with iron oxalate

Author:

Rudenkov A.S., ,Yarmolenko M.A.,Rogachev A.A.,Surzhikov A.P.,Luchnikov A.P.,Frolova O.A., , , ,

Abstract

Peculiarities of forming of iron oxide coatings with reinforced carbon nanostructures from gas phase generated by laser dispersion of composite target were explored. Influence of technological modes of heat treatment on morphology and phase composition of nanostructured film layers was determined. It was found that on a substrate highly dispersed layers containing carbon nanostructures are formed. Using Raman spectroscopy it was shown that in oxide matrix carbon structures, which are mainly in the form of planar located nanotubes, appear. It was found that with a mass ratio of polyethylene and iron oxalate equal to 1:1, the distribution of the formed nanostructures in size is unimodal with a maximum near 20 nm. At dispersing of polyethylene and iron oxalate mixture with mass ratio 1:2 in deposited layers nanotubes have the least defectiveness. Patterns of influence on morphology and coatings phase composition of relative component abundance in being dispersed by laser radiation composite target were determined. It was shown that with the growing of iron oxalate concentration in the target coating structural heterogeneity increases, subroughness and average size of separate nanostructures in the deposited condensate grow. The obtained polymer matrix nanocomposite films can be used in sensors.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3