High responsivity UV detector based on TiO2-rGO nanocomposite material

Author:

Zhumabekov A.,Kassanova A.,Ispulov N.,Dossumbekov K.,Ospanova Zh.,Dossanov T.,Kurmanov A.

Abstract

The influence of reduced graphene oxide and the optoelectronic characterictics of a nanocomposites based on rGO and TiO2 were studied. Surface morphology and Raman spectra of nanocomposite materials indicate the presence of initial components. It has been illustrated that during hydrothermal synthesis further reduction of rGO occurs, i.e. the variety of oxygen-containing groups decreases. Studies of current-voltage characteristics have displayed the availability of rGO in the nanocomposite leads to an increase in the photo induced current to more than 40 µA. Next, the photoresponsivity of the samples was determined, which is three orders of value higher than pure titanium dioxide for nano-composite material. And the detectivity also increased 9 times. This parameter allows you to identify the performance of the device. In this regard, the UV detector based on nanocomposite has a higher performance. Studies also show a decrease in reaction time to light irradiation. When irradiated, the nanocomposite material reacts to light three orders of magnitude faster than TiO2.

Publisher

Karagandy University of the name of academician E.A. Buketov

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3