Quantum-Chemical Study of Aggregation of 5-(4'-Dimethylaminobenzylidene)Barbituric Acid

Author:

Birimzhanova Dinara A.ORCID, ,Irgibaeva Irina S.ORCID,Barashkov Nikolay N.ORCID, ,

Abstract

Decreasing fluorescence efficiency in the solid-state is general and is mainly attributed to the intermolecular vibronic interactions, which induce the nonradiative deactivation process. Whereas the isolated dye molecules are virtually non-luminescent in dilute solutions, they become highly emissive upon solution thickening or aggregation in poor solvents or in the solid-state show an increase of luminescence intensity, the phenomenon of the aggregation-induced emission (AIE phenomenon). The development of efficient luminescent materials is a topic of great current interest. Theoretical calculation shows that the dye molecules' aggregation-induced emission characteristics result from intermolecular interactions. Utilizing such features, the molecules can be employed as fluorescent probes for the detection of the ethanol content in aqueous solutions. Quantum-chemical calculations using the method of density functional theory the computations of structure and electronic spectra of aggregated forms of 5-(4’-dimethylaminobenzylidene)barbituric acid and the Gaussian 98 program packages have been performed. The unusual spectral behavior of 5-(4’-dimethylamino-benzylidene)barbituric acid was investigated theoretically by the DFT method and its time-dependent variant TDDFT. Carried out calculations using Zindo, as well as ab initio calculations, confirm the appearance of a new band during aggregation and its shift to the red region when the number of molecules increases.

Publisher

Karagandy University of the name of academician E.A. Buketov

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3