Obtaining functional-gradient Ti-HA coatings by detonation spraying

Author:

Sagdoldina Zh.B., ,Baizhan D.R.,Kambarov Y. Y.,Torebek K., , ,

Abstract

Functional-gradient titanium/hydroxyapatite (TiHA) coatings were obtained using detonation spraying technology to improve the structure and mechanical properties. To obtain functional-gradient coatings, pulsed energy sources are best suited, namely, detonation spraying, in which the energy of the explosion of gas mixtures is used as a source of pulsed action. By controlling the modes of detonation spraying, it is possible to vary the temperature and rate of coating deposition; accordingly, it is possible to obtain a certain structuralphase structure of the coatings. The structural-phase state and tribological properties of TiHA detonation coatings were investigated by modern materials science methods: X-ray phase analysis (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX-mapping), profilometry and ball-disk wear-resistance test. The results showed that the coatings had a continuously gradient elemental composition across the cross-section of the coatings with no boundary between the elemental layers of the coatings. The amount of Ti gradually decreased and the amount of hydroxyapatite gradually increased in the direction from the substrate to the surface of the coatings, which allows to expand the possibilities of using TiHA-coatings for bone implants. Since the surface layer is composed of HA, the resulting functional-gradient coating demonstrates excellent biocompatibility and the ability to create new bone tissue. The excellent mechanical strength of the functionally graded coatings is ensured by the Ti phase.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3