Investigation of the characteristics of an indirect plasma torch

Author:

Kengesbekov A.B.,Sagdoldin Zh.B.,Buitkenov D.B.,Ocheredko I.A.,Abdulina S.A.,Torebek K.

Abstract

The main task of creating plasma technologies is to improve the operation parameters of its main element - the plasma torch, which is achieved by designing and constructing its main nodes. The paper analyzes the principles of designing a plasma torch and investigates the characteristics of an arc discharge plasma torch. The possibilities of increasing the thermal stability of the anode structure are considered; the speed and trajectory of powder particles are studied; the axial introduction of the powder through the cathode and the thermal stability of the cathode are studied. Using the finite element method, the effect of the anode shape on the service life of the plasma torch is studied by estimating the heat release power under the condition above the melting temperature of copper (anode). The optimal anode geometry for effective cooling of the unit with radial inlet and outlet of the coolant is determined. The influence of the thermal load on the cathode part of the plasma torch is studied, the thermophysical characteristics of the cathode on the operational characteristics of the plasma torch during the thermal load are taken. The dynamics of the particle by axial injection of the powder through the cathode is calculated, and the dynamics of the heating of the powder particle is determined. The output of the carrier gas is stabilized by a swirler and has great dynamics and is located in the high-temperature part of the arc. The trajectory of the movement of a powder particle in the nozzle area is calculated, which corresponds to the average value of the velocity ≈450-500 m/s. It is found that an increase in the cathode diameter from 3 to 5 mm reduces the thermal load by 50%.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

Microbiology (medical),Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Activation of fluoranhydrite with various chemical additives for the production of gypsum fiberboards;Bulletin of the Karaganda University "Physics Series";2024-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3