Study of electrophysical properties of beryllium ceramics with the addition of microand nanoparticles of titanium dioxide

Author:

Pavlov A.V.,Zhilkashinova A.M.,Gert S.S.,Magazov N.M.,Turar Zh.S.,Nabioldina A.B.

Abstract

In the present paper the research results of influence of nanoparticles TiO2 additions in the range 0,1 — 2,0 wt. % on electrophysical properties of oxide-beryllium ceramics (BeO + TiO2) made of micropowders are presented. The electrophysical characteristics of synthesized ceramics modified with 30 wt. % TiO2 microand nanoparticles in the electric current frequency range of 100 Hz — 100 MHz were studied by the total complex resistance method (impedance). It is known that the introduction of TiO2 addition to the BeOceramics after heat treatment in a reducing atmosphere is accompanied by a significant increase in electrical conductivity and the ability to absorb electromagnetic radiation in a wide range of frequencies. According to the results of the studies it was found that the addition of nanoparticles TiO2 into the (BeO + TiO2)-ceramics significantly reduces its static electrical resistance in comparison with the serial sample, and the specific conductivity of such ceramics significantly increases at high frequencies ~ 107 Hz. The addition of TiO2 nanoparticles significantly increases the dielectric losses of the sample sintered in the temperature range 1530 — 1550 °C. The values of real and imaginary parts of dielectric permittivity of such ceramics and the tangent of the angle of dielectric loss are two times higher compared to the serial sample — BT-30 (B — beryllium, T — titanium). The obtained results are unique in their kind, due to the experiment with a rare and strategically important material — beryllium oxide and the possibility of synthesizing new nanostructures based on it.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

Microbiology (medical),Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3