Interaction model of low-temperature plasma with a steel surface during electrolyte plasma nitriding in an electrolyte on the bases of carbamide

Author:

Kozhanova R.S., ,Rakhadilov B.K.,Wieleba W., ,

Abstract

The features of the formation of low-temperature plasma and its interaction with a metal surface were studied in this work. A qualitative model of the interaction of low-temperature plasma with the steel surface during nitriding has been developed by summarizing the available research results and taking into account the specific features of the electrolyte plasma process. In accordance with this model, in the first moments of the interaction of low-temperature plasma with the steel surface in the near-surface layer, which accelerated formation of the Feα(N) solid solution occurs due to the action of directed bombardment of charged particles, which enhances the adsorption and diffusion of nitrogen into the interior of the material, then dispersed particles of nitride of alloying elements are formed as further saturation in places with an increased level of free energy (at lattice defects, at grain boundaries, etc.). Subsequently, transformations occur in the surface zone of the layer when the limiting solubility of nitrogen in iron is exceeded, which leading to the formation of nitrides of the γ′-phase (Fe4N) and ε-phase (Fe2–3N) in it. Thus, electrolyte plasma nitriding opens up many new possibilities, in particular: varying the nitriding temperature over a wide range (400–700 ºC), targeted production of a nitrided layer consisting only of a diffusion layer without a layer of compounds, while obtaining a diffusion layer with particles γ’-phase (Fe4N) of plate form and with finely dispersed nitrides MN (CrN). The use of an electric discharge in an electrolyte (low-temperature plasma) makes it possible to increase the heating rate and diffusion saturation of the material surface. This work is of practical importance, since the studied method of electrolytic-plasma nitriding makes it possible to obtain a modified surface layer on steels with high physical and mechanical properties.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3