Abstract
Large-scale deployment of the perovskite photovoltaic technology using such high-performance materials as СH3NH3PbI3may face serious environmental issuesin the future. Implementation of perovskite solar cellbased on Sncouldbe an alternative solution for commercialisation. This paperpresents the results of a theoretical study of a lead-free, environmentally-friendlyphotovoltaic cellusing СH3NH3SnI3as a light-absorbing layer. The characteristics of a photovoltaic cell based on perovskite were modelled using the SCAPS-1D program. Various thicknesses of the absorbing layer were analysed,and an optimised device structure is proposed,demonstratinga high power conversionefficiencyof up to 28% at ambient temperature. The analysis of the thicknesses of the СH3NH3SnI3absorbing layer revealedthat at a thickness of 500 nm, performance is demonstrated with an efficiencyof 27.41 %, a fill factor of 85.92 %, a short circuit current density of 32.60 mA/cm2and an open-circuit voltage of 0.98 V. The obtained numerical results indicate that the СH3NH3SnI3absorbing layer may be a viable replacement forthe standard materials and may form the basis of a highly efficient technology of the environmentally-friendlyperovskite solar cells.
Publisher
Karagandy University of the name of academician E.A. Buketov
Subject
General Physics and Astronomy,General Energy,General Engineering,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献