Author:
Ashurov R.R., ,Fayziev Yu.E.,
Abstract
Initial boundary value problems with a time-nonlocal condition for a subdiffusion equation with the Riemann-Liouville time-fractional derivatives are considered. The elliptical part of the equation is the Laplace operator, defined in an arbitrary N−dimensional domain Ω with a sufficiently smooth boundary ∂Ω. The existence and uniqueness of the solution to the considered problems are proved. Inverse problems are studied for determining the right-hand side of the equation and a function in a time-nonlocal condition. The main research tool is the Fourier method, so the obtained results can be extended to subdiffusion equations with a more general elliptic operator.
Publisher
Karagandy University of the name of academician E.A. Buketov
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献