Approximate solutions of the Riemann problem for a two-phase flow of immiscible liquids based on the Buckley–Leverett model

Author:

Aldanov Y.S., ,Toleuov T.Zh.,Tasbolatuly N., , ,

Abstract

The article proposes an approximate method based on the "vanishing viscosity" method, which ensures the smoothness of the solution without taking into account the capillary pressure. We will consider the vanishing viscosity solution to the Riemann problem and to the boundary Riemann problem. It is not a weak solution, unless the system is conservative. One can prove that it is a viscosity solution actually meaning the extension of the semigroup of the vanishing viscosity solution to piecewise constant initial and boundary data. It is known that without taking into account the capillary pressure, the Buckley–Leverett model is the main one. Typically, from a computational point of view, approximate models are required for time slicing when creating computational algorithms. Analysis of the flow of a mixture of two immiscible liquids, the viscosity of which depends on pressure, leads to a further extension of the classical Buckley–Leverett model. Some two-phase flow models based on the expansion of Darcy’s law include the effect of capillary pressure. This is motivated by the fact that some fluids, e.g., crude oil, have a pressure-dependent viscosity and are noticeably sensitive to pressure fluctuations. Results confirm the insignificant influence of cross-coupling terms compared to the classical Darcy approach.

Publisher

Karagandy University of the name of academician E.A. Buketov

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3