Abstract
Let K be a field of characteristic zero, X={x_(1,) x_2,…,x_n} and R_m={r_(1,) ,…,r_m} be two sets of variables, F be the free left nitpotent Leibniz algebra generated by X, and K[R_m ] be the commutative polynomial algebra generated by R_m over the base field K. The fixed point subalgebra of an automorphism φ is the subalgebra of F consisting of elements that are invariant under the automorphism. In this work, we consider specific automorphisms of F and determine the fixed point subalgebras of these automorphisms. Then, we find bases of these fixed point subalgebras. In addition, we get generators of these subalgebras as a free K[R_m ] -module.
Publisher
Balikesir Universitesi Fen Bilimleri Enstitusu Dergisi
Reference17 articles.
1. Bloh, A., On a generalization of Lie algebra notion, Mathematical in USSR Doklady, 165 (3), 471-473, (1965).
2. Loday, J. L., Une version noncommutative des algebres de Lie: les algebres de Leibniz, Enseignement Mathématique 39, 269-293, (1993).
3. Loday, J. L., Pirashvili, T., Universal enveloping algebras of Leibniz algebra and (co)Homology, Mathematical Annalen 296, 139-158, (1993).
4. Mikhalev, A. A., Umirbaev, U. U., Subalgebras of free Leibniz algebras, Communications in Algebra, 26, 435-446, (1998).
5. Drensky, V., Piacentini Cattaneo G. M., Varieties of metabelian Leibniz algebras, Journal of Algebra and its Applications 1, 31-50, (2002).