On the Spectrum of the Non-Selfadjoint Differential Operator with an Integral Boundary Condition and Negative Weight Function

Author:

COSKUN Nimet1ORCID,GÖRGÜLÜ Merve1ORCID

Affiliation:

1. KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ

Abstract

In this paper, we shall study the spectral properties of the non-selfadjoint operator in the space $L_{\varrho }^{2}\left(\mathbb{R}_{+}\right) $ generated by the Sturm-Liouville differential equation \begin{equation*} -y^{^{\prime \prime }}+q\left( x\right) y=\omega ^{2}\varrho \left( x\right) y, \quad x \in \mathbb{R}_{+} \end{equation*} with the integral type boundary condition \begin{equation*} \int \limits_{0}^{\infty }G\left( x \right) y\left( x\right) dx+ \gamma y^{\prime }\left( 0\right) -\theta y\left( 0\right) =0 \end{equation*} and the non-standard weight function \begin{equation*} \varrho \left( x\right) =-1 \end{equation*} where $\left \vert \gamma \right \vert +\left \vert \theta \right \vert \neq 0$. There are an enormous number of papers considering the positive values of $ \varrho \left( x\right) $ for both continuous and discontinuous cases. The structure of the weight function affects the analytical properties and representations of the solutions of the equation. Differently from the classical literature, we used the hyperbolic type representations of the fundamental solutions of the equation to obtain the spectrum of the operator. Moreover, the conditions for the finiteness of the eigenvalues and spectral singularities were presented. Hence, besides generalizing the recent results, Naimark's and Pavlov's conditions were adopted for the negative weight function case.

Funder

None

Publisher

Universal Journal of Mathematics and Applications

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

Reference28 articles.

1. [1] M. Kudu, G. M. Amiraliyev, Finite Difference Method for a Singularly Perturbed Differential Equations with Integral Boundary Condition, International Journal of Mathematics and Computation, 26(3) (2015).

2. [2] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover Books on Physics, Courier Corporation, 800 p., (2013).

3. [3] B. S. Pavlov, On the spectral theory of non-selfadjoint differential operators, Doklady Akademii Nauk, Russian Academy of Sciences, 146(6) (1962).

4. [4] V. A. Marchenko, Sturm-Liouville Operators and Applications, Birkhauser Verlag, (Basel), (1986).

5. [5] M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of second order on a semi-axis, AMS Transl. 2 (1960), 103-193.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3