Author:
Seo Hyun-Ju,Yoon Seok-Jun,Lee Sang-Il,Lee Kun Sei,Yun Young Ho,Kim Eun-Jung,Oh In-Hwan
Abstract
Abstract
Background
Calculating the Charlson comorbidity index (CCI) from medical records is a time-consuming and expensive process. The objectives of this study are to 1) measure agreement between medical record and claims data for CCI in lung cancer patients and 2) predict health outcomes of lung cancer patients based on CCIs from both data sources.
Methods
We studied 392 patients who underwent surgery for pathologic stages I-III of lung cancer. The kappa value was used to measure the agreement between the 17 comorbidities of the CCI prevalence obtained from medical records and claims data. Multiple linear regression analyses were used to evaluate the relationships between CCI and length of stay and reimbursement cost.
Results
Out of 17 comorbidities identified in the Charlson comorbidity index, ten had a higher prevalence, four had a lower prevalence and three had a similar prevalence in claims data to those of medical records. The kappa values calculated from the two databases ranged from 0.093 to 0.473 for nine comorbidities. In predicting length of stay and reimbursement cost after surgical resection for lung cancer patients, the CCI scores derived from both the medical records and claims data were not statistically significant.
Conclusions
Poor agreement between medical record data and claims data may result from different motivations for collecting data. Further studies are needed to determine an appropriate method for predicting health outcomes based on these data sources.
Publisher
Springer Science and Business Media LLC
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献