Validation of a method for identifying nursing home admissions using administrative claims

Author:

Zuckerman Ilene H,Sato Masayo,Hsu Van Doren,Hernandez Jose J

Abstract

Abstract Background Currently there is no standard algorithm to identify whether a subject is residing in a nursing home from administrative claims. Our objective was to develop and validate an algorithm that identifies nursing home admissions at the resident-month level using the MarketScan Medicare Supplemental and Coordination of Benefit (COB) database. Methods The computer algorithms for identifying nursing home admissions were created by using provider type, place of service, and procedure codes from the 2000 – 2002 MarketScan Medicare COB database. After the algorithms were reviewed and refined, they were compared with a detailed claims review by an expert reviewer. A random sample of 150 subjects from the claims was selected and used for the validity analysis of the algorithms. Contingency table analysis, comparison of mean differences, correlations, and t-test analyses were performed. Percentage agreement, sensitivity, specificity, and Kappa statistics were analyzed. Results The computer algorithm showed strong agreement with the expert review (99.9%) for identification of the first month of nursing home residence, with high sensitivity (96.7%), specificity (100%) and a Kappa statistic of 0.97. Weighted Pearson correlation coefficient between the algorithm and the expert review was 0.97 (p < 0.0001). Conclusion A reliable algorithm indicating evidence of nursing home admission was developed and validated from administrative claims data. Our algorithm can be a useful tool to identify patient transitions from and to nursing homes, as well as to screen and monitor for factors associated with nursing home admission and nursing home discharge.

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3