Abstract
AbstractIn this article we introduce the generalized Fibonacci difference operator$\mathsf{F}(\mathsf{B})$F(B)by the composition of a Fibonacci band matrix and a triple band matrix$\mathsf{B}(x,y,z)$B(x,y,z)and study the spaces$\ell _{k}( \mathsf{F}(\mathsf{B}))$ℓk(F(B))and$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$ℓ∞(F(B)). We exhibit certain topological properties, construct a Schauder basis and determine the Köthe–Toeplitz duals of the new spaces. Furthermore, we characterize certain classes of matrix mappings from the spaces$\ell _{k}(\mathsf{F}(\mathsf{B}))$ℓk(F(B))and$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$ℓ∞(F(B))to space$\mathsf{Y}\in \{\ell _{\infty },c_{0},c,\ell _{1},cs_{0},cs,bs\}$Y∈{ℓ∞,c0,c,ℓ1,cs0,cs,bs}and obtain the necessary and sufficient condition for a matrix operator to be compact from the spaces$\ell _{k}(\mathsf{F}(\mathsf{B}))$ℓk(F(B))and$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$ℓ∞(F(B))to$\mathsf{Y}\in \{ \ell _{\infty }, c, c_{0}, \ell _{1},cs_{0},cs,bs\} $Y∈{ℓ∞,c,c0,ℓ1,cs0,cs,bs}using the Hausdorff measure of non-compactness.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference64 articles.
1. Ahmad, Z.U., Mursaleen, M.: Köthe–Toeplitz duals of some new sequence spaces and their matrix maps. Publ. Inst. Math. (Belgr.) 42, 57–61 (1987)
2. Alotaibi, M., Mursaleen, M., Alamri, B., Mohiuddine, S.A.: Compact operators on some Fibonacci difference sequence spaces. J. Inequal. Appl. 2015, 203 (2015)
3. Alp, P.Z., İlkhan, M.: On the difference sequence space $\ell _{p}(\hat{T}^{q})$. Math. Sci. Appl. E-Notes 7(2), 161–173 (2019)
4. Altay, B., Başar, F., Mursaleen, M.: On the Euler sequence spaces which include the spaces $\ell _{p}$ and $\ell _{\infty }$ I. Inf. Sci. 176, 1450–1462 (2006)
5. Başar, F., Çakmak, A.F.: Domain of the triple band matrix on some Maddox’s spaces. Ann. Funct. Anal. 3(1), 32–48 (2012)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献