Existence of positive solutions for a class of fractional differential equations with the derivative term via a new fixed point theorem

Author:

Sang YanbinORCID,He Luxuan,Wang Yanling,Ren Yaqi,Shi Na

Abstract

AbstractIn this paper, we firstly establish the existence and uniqueness of solutions of the operator equation $A(x,x)+ B(x,x)+C(x)+e = x$ A ( x , x ) + B ( x , x ) + C ( x ) + e = x , where A and B are two mixed monotone operators, C is a decreasing operator, and $e\in P$ e P with $\theta \leq e \leq h$ θ e h . Then, using our abstract theorem, we prove a class of fractional boundary value problems with the derivative term to have a unique solution and construct the corresponding iterative sequences to approximate the unique solution.

Funder

the Programs for the Cultivation of Young Scientific Research Personnel of Higher Education Institutions in Shanxi Province

the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

the Innovative Research Team of North University of China

the Fund for Shanxi '1331KIRT'

Natural Science Foundation of Shanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference26 articles.

1. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, New York (1993)

2. North-Holland Mathematics Studies;A. Kilbas,2006

3. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, New York (1999)

4. Afshari, H., Marasi, H., Aydi, H.: Existence and uniqueness of positive solutions for boundary value problems of fractional differential equations. Filomat 31(9), 2675–2682 (2017)

5. Liu, X.Q., Liu, L.S., Wu, Y.H.: Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives. Bound. Value Probl. 2018, 24 (2018)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3