Abstract
AbstractThis paper is related to some dynamical aspects of a class of predator–prey interactions incorporating cannibalism and Allee effects for non-overlapping generations. Cannibalism has been frequently observed in natural populations, and it has an ability to alter the functional response concerning prey–predator interactions. On the other hand, from dynamical point of view cannibalism is considered as a procedure of stabilization or destabilization within predator–prey models. Taking into account the cannibalism in prey population and with addition of Allee effects, a new discrete-time system is proposed and studied in this paper. Moreover, existence of fixed points and their local dynamics are carried out. It is verified that the proposed model undergoes transcritical bifurcation about its trivial fixed point and period-doubling bifurcation around its boundary fixed point. Furthermore, it is also proved that the proposed system undergoes both period-doubling and Neimark–Sacker bifurcations (NSB) around its interior fixed point. Our study demonstrates that outbreaks of periodic nature may appear due to implementation of cannibalism in prey population, and these periodic oscillations are limited to prey density only without leaving an influence on predation. To restrain this periodic disturbance in prey population density, and other fluctuating and bifurcating behaviors of the model, various chaos control methods are applied. At the end, numerical simulations are presented to illustrate the effectiveness of our theoretical findings.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献