Fixed point problems for generalized contractions with applications

Author:

Nazam MuhammadORCID,Park ChoonkilORCID,Arshad MuhammadORCID

Abstract

AbstractIn this paper, we investigate the conditions on the control mappings $\psi ,\varphi :(0,\infty )\rightarrow \mathbb{R}$ ψ , φ : ( 0 , ) R that guarantee the existence of the fixed points of the mapping $T:X\rightarrow P(X)$ T : X P ( X ) satisfying the following inequalities: $$ \psi \bigl(H(Tx,Ty)\bigr)\leq \varphi \bigl(d(x,y)\bigr) \quad \forall x,y\in X, \text{provided that } H(Tx,Ty)>0, $$ ψ ( H ( T x , T y ) ) φ ( d ( x , y ) ) x , y X , provided that  H ( T x , T y ) > 0 , and $$ \psi \bigl(H(Tx,Ty)\bigr)\leq \varphi \bigl(A(x,y)\bigr) \quad \forall x,y\in X, \text{provided that } H(Tx,Ty)>0, $$ ψ ( H ( T x , T y ) ) φ ( A ( x , y ) ) x , y X , provided that  H ( T x , T y ) > 0 , where $A(x,y)=\max \{ d(x,y), d(x,Tx), d(y,Ty), (d(x,Ty) +d(Tx,y))/2 \} $ A ( x , y ) = max { d ( x , y ) , d ( x , T x ) , d ( y , T y ) , ( d ( x , T y ) + d ( T x , y ) ) / 2 } , and $(X, d)$ ( X , d ) is a metric space. The obtained fixed point results improve many earlier results on the set-valued contractions. As an application, we consider the existence of the solutions of an FDE.

Funder

Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference41 articles.

1. Abbas, M., Berzig, M., Nazir, T., Karapinar, E.: Iterative approximation of fixed points for presic type F-contraction operators. UPB Sci. Bull., Ser. A, Appl. Math. Phys. 78(2), 147–160 (2016)

2. Acar, O., Altun, I.: Multivalued F-contractive mappings with a graph and some fixed point results. Publ. Math. (Debr.) 88, 305–317 (2016)

3. Acar, O., Durmaz, G., Minak, G.: Generalized multivalued F-contractions on complete metric space. Bull. Iran. Math. Soc. 40(6), 1469–1478 (2014)

4. Adigüzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. https://doi.org/10.1002/mma.665

5. Afshari, H., Aydi, H., Karapinar, E.: Some fixed point results for multivalued mappings in b-metric spaces. East Asian Math. J. 32, 319–332 (2016)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3