Abstract
AbstractIn this paper, we study the behavior of $L_{ ( \omega,C ) }$
L
(
ω
,
C
)
-contraction mappings and establish some results on common fixed circles and discs. We explain the significance of our main theorems through examples and applications.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference47 articles.
1. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations itegérales. Fundam. Math. 3, 133–181 (1922)
2. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20, 61–80 (2008)
3. Karapinar, E., Czerwik, S., Aydi, H.: $(\alpha,\psi)$-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, Article ID 3264620 (2018)
4. Patle, P., Patel, D., Aydi, H., Radenović, S.: On $H^{+}$-type multivalued contractions and applications in symmetric and probabilistic spaces. Mathematics 7(2), 144 (2019)
5. Özdemir, N., İskender, B.B., Özgür, N.Y.: Complex valued neural network with Möbius activation function. Commun. Nonlinear Sci. Numer. Simul. 16, 4698–4703 (2011)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献