Abstract
AbstractBy using an endpoint result for set-valued maps, we study the existence of solutions for a fractional q-differential inclusion with sum and integral boundary value conditions on the time scale $\mathbb{T}_{t_{0}}= \{t_{0} q, t_{0} q^{2},\ldots \} \cup \{0\}$
T
t
0
=
{
t
0
q
,
t
0
q
2
,
…
}
∪
{
0
}
, where $t_{0}$
t
0
is a real number and $q \in (0,1)$
q
∈
(
0
,
1
)
. We provide an example involving some graphs and algorithms via numerical calculations to illustrate our main result.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference48 articles.
1. Jackson, F.H.: q-difference equations. Am. J. Math. 32, 305–314 (1910). https://doi.org/10.2307/2370183
2. Adams, C.R.: The general theory of a class of linear partial q-difference equations. Trans. Am. Math. Soc. 26, 283–312 (1924)
3. Adams, C.R.: Note on the integro-q-difference equations. Trans. Am. Math. Soc. 31(4), 861–867 (1929)
4. Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66, 365–370 (1969). https://doi.org/10.1017/S0305004100045060
5. Al-Salam, W.A.: q-analogues of Cauchy’s formula. Proc. Am. Math. Soc. 17, 182–184 (1952)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献