Author:
Yang Jing,Wei Zhouchao,Moroz Irene
Abstract
AbstractIn this paper, we show a zero-Hopf bifurcation in a four-dimensional smooth quadratic autonomous hyperchaotic system. Using averaging theory, we prove the existence of periodic orbits bifurcating from the zero-Hopf equilibrium located at the origin of the hyperchaotic system, and the stability conditions of periodic solutions are given.
Funder
National Natural Science Foundation of China
Graduates education Teaching Research and Reform Project
Fundamental Research Funds for the Central Universities, China University of Geosciences
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference25 articles.
1. Udaltsov, V., Goedgebuer, J., Larger, L., Cuenot, J.: Communicating with hyperchaos, the dynamics of a DNLF emitter and recovery of transmitted information. Opt. Spectrosc. 95(1), 114–118 (2003)
2. Shahverdiev, E.M., Nuriev, R.A., Shore, K.A.: Adaptive time delay hyperchaos synchronization in laser diodes subject to optical feedback. Nonlinearity 29, Article ID 0404053 (2004)
3. Cenys, A., Tamaservicius, A., Baziliauskas, A., Krivickas, R., Lindberg, E.: Hyperchaos in coupled colpitts oscillators. Chaos Solitons Fractals 17(3), 349–353 (2003)
4. Hsieh, J., Wang, C., Wang, A., Li, W.: Controlling hyperchaos of the Rössler system. Int. J. Control 72(10), 882–886 (1999)
5. Grassi, G., Mascolo, S.: A systematic procedure for synchronizing hyperchaos via observer design. J. Circuits Syst. Comput. 11(1), 1–16 (2002)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献