Author:
Shams Mudassir,Rafiq Naila,Kausar Nasreen,Agarwal Praveen,Park Choonkil,Mir Nazir Ahmad
Abstract
AbstractA highly efficient new three-step derivative-free family of numerical iterative schemes for estimating all roots of polynomial equations is presented. Convergence analysis proved that the proposed simultaneous iterative method possesses 12th-order convergence locally. Numerical examples and computational cost are given to demonstrate the capability of the method presented.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference31 articles.
1. Cordero, A., Huesoa, J.L., Martínez, E., Torregrosa, J.R.: A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equations. J. Comput. Appl. Math. 252, 95–102 (2013)
2. Shah, F.A., Noor, M.A., Batool, M.: Derivative-free iterative methods for solving nonlinear equations. Appl. Math. Inf. Sci. 8(5), 2189–2193 (2014)
3. Agarwal, P., Filali, D., Akram, M., Dilshad, M.: Convergence analysis of a three-step iterative algorithm for generalized set-valued mixed-ordered variational inclusion problem. Symmetry 13(3), 444 (2021)
4. Sunarto, A., Agarwal, P., Sulaiman, J., Chew, J.V.L., Aruchunan, E.: Iterative method for solving one-dimensional fractional mathematical physics model via quarter-sweep and PAOR. Adv. Differ. Equ. 2021(1), 147 (2021)
5. Attary, M., Agarwal, P.: On developing an optimal Jarratt-like class for solving nonlinear equations. Ital. J. Pure Appl. Math. 43, 523–530 (2020)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献