Abstract
Abstract
We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source
$$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$
u
t
+
(
−
Δ
)
β
2
u
=
(
1
+
|
x
|
)
γ
∫
0
t
(
t
−
s
)
α
−
1
|
u
|
p
∥
ν
1
q
(
x
)
u
∥
q
r
d
s
for $(x,t) \in \mathbb{R}^{N}\times (0,\infty )$
(
x
,
t
)
∈
R
N
×
(
0
,
∞
)
with initial data $u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$
u
(
x
,
0
)
=
u
0
(
x
)
∈
L
loc
1
(
R
N
)
, where $p,q,r>1$
p
,
q
,
r
>
1
, $q(p+r)>q+r$
q
(
p
+
r
)
>
q
+
r
, $0<\gamma \leq 2 $
0
<
γ
≤
2
, $0<\alpha <1$
0
<
α
<
1
, $0<\beta \leq 2$
0
<
β
≤
2
, $(-\Delta )^{\frac{\beta }{2}}$
(
−
Δ
)
β
2
stands for the fractional Laplacian operator of order β, the weight function $\nu (x)$
ν
(
x
)
is positive and singular at the origin, and $\Vert \cdot \Vert _{q}$
∥
⋅
∥
q
is the norm of $L^{q}$
L
q
space.
Funder
King Abdulaziz University
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference16 articles.
1. Allegretto, W., Nistri, P.: Existence and optimal control for periodic parabolic equations with nonlocal term. IMA J. Math. Control Inf. 16, 43–58 (1999)
2. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)
3. Cazenave, T., Dickstein, F., Weissler, F.B.: An equation whose Fujita critical exponent is not given by scaling. Nonlinear Anal. 68, 862–874 (2008)
4. Chen, C.S., Huang, J.C.: Some nonexistence results for degenerate parabolic inequalities with local and nonlocal nonlinear terms. J. Nanjing Univ. Math. Biq. 21, 12–20 (2004)
5. Fino, A.Z., Kirane, M.: Qualitative properties of solutions to a time-space fractional evolution equation. Q. Appl. Math. 70, 133–157 (2012)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献