Abstract
AbstractIn this article, we first demonstrate a fixed point result under certain contraction in the setting of controlledb-Branciari metric type spaces.Thereafter, we specifically consider a following boundary value problem (BVP) for a singular fractional differential equation of order α:$$ \begin{aligned} &{}^{c}D^{\alpha }v(t) + h \bigl(t,v(t) \bigr) = 0,\quad 0< t< 1, \\ &v''(0) = v'''(0) = 0, \\ &v'(0) = v(1) = \beta \int _{0}^{1} v(s) \,ds, \end{aligned} $$Dαcv(t)+h(t,v(t))=0,0<t<1,v″(0)=v‴(0)=0,v′(0)=v(1)=β∫01v(s)ds,where$3<\alpha <4$3<α<4,$0<\beta <2$0<β<2,${}^{c}D^{\alpha }$Dαcis the Caputo fractional derivative andhmay be singular at$v = 0$v=0.Eventually, we investigate the existence and uniqueness of solutions of the aforementioned boundary value problem of orderαvia a fixed point problem of an integral operator.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference48 articles.
1. Abdeljawad, T., Agrawal, R.P., Karapınar, E., Sumati Kumari, P.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11, 686 (2019)
2. Abdeljawad, T., Karapinar, E., Panda, S.K., Mlaiki, N.: Solutions of boundary value problems on extended-Branciari b-distance. J. Inequal. Appl. 2020, 103 (2020)
3. Agarwal, R.P., Ahmad, B.: Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 18, 457–470 (2011)
4. Ahmad, B., Agarwal, R.P.: On nonlocal fractional boundary value problems. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 18, 535–544 (2011)
5. Alghamdi, M.A., Gulyaz-Ozyurt, S., Karapınar, E.: A note on extended Z-contraction. Mathematics 8, 195 (2020)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献