Author:
Su Guangwang,Han Caihong,Sun Taixiang,Li Lue
Abstract
AbstractIn this paper, we study the following max-type system of difference equations of higher order: $$ \textstyle\begin{cases} x_{n} = \max \{A ,\frac{y_{n-t}}{x_{n-s}} \}, \\ y_{n} = \max \{B ,\frac{x_{n-t}}{y_{n-s}} \},\end{cases}\displaystyle \quad n\in \{0,1,2,\ldots \}, $${xn=max{A,yn−txn−s},yn=max{B,xn−tyn−s},n∈{0,1,2,…}, where $A,B\in (0, +\infty )$A,B∈(0,+∞), $t,s\in \{1,2,\ldots \}$t,s∈{1,2,…} with $\gcd (s,t)=1$gcd(s,t)=1, the initial values $x_{-d},y_{-d},x_{-d+1},y_{-d+1}, \ldots , x_{-1}, y_{-1}\in (0,+ \infty )$x−d,y−d,x−d+1,y−d+1,…,x−1,y−1∈(0,+∞) and $d=\max \{t,s\}$d=max{t,s}.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference39 articles.
1. Berenhaut, K.S., Foley, J.D., Stević, S.: Boundedness character of positive solutions of a max difference equation. J. Differ. Equ. Appl. 12, 1193–1199 (2006)
2. Cranston, D.M., Kent, C.M.: On the boundedness of positive solutions of the reciprocal max-type difference equation $x_{n} =\max \{A^{1}_{n-1}/x_{n-1}, A^{2}_{n-1}/x_{n-2}, \ldots , A^{t}_{n-1}/x_{n-t} \}$ with periodic parameters. Appl. Math. Comput. 221, 144–151 (2013)
3. Elsayed, E.M., Iričanin, B.D.: On a max-type and a min-type difference equation. Appl. Math. Comput. 215, 608–614 (2009)
4. Elsayed, E.M., Iričanin, B.D., Stević, S.: On the max-type equation $x_{n+1} =\max \{A_{n}/x_{n}, x_{n-1}\}$. Ars Comb. 95, 187–192 (2010)
5. Fotiades, E., Papaschinopoulos, G.: On a system of difference equations with maximum. Appl. Math. Comput. 221, 684–690 (2013)