Abstract
AbstractIn this work, a nonlinear singular variable-order fractional Emden–Fowler equation involved with derivative with non-singular kernel (in the Atangana–Baleanu–Caputo type) is introduced and a computational method is proposed for its numerical solution. The desired method is established upon the shifted Jacobi polynomials and their operational matrix of variable-order fractional differentiation (which is extracted in the present study) together with the spectral collocation method. The presented method transforms obtaining the solution of the main problem into obtaining the solution of an algebraic system of equations. Several numerical examples are examined to show the validity and the high accuracy of the established method.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference38 articles.
1. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
2. Baleanu, D., Jajarmi, A., Sadat Sajjadi, S., Asad, J.: The fractional features of a harmonic oscillator with position-dependent mass. Commun. Theor. Phys. 75(5), 055002 (2020)
3. Sadat Sajjadi, S., Baleanu, D., Jajarmi, A., Mohammadi Pirouz, H.: A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos Solitons Fractals 138, 109919 (2020)
4. Jajarmi, A., Yusuf, A., Baleanu, D., Inc, M.: A new fractional HRSV model and its optimal control: a non-singular operator approach. Phys. A, Stat. Mech. Appl. 547, 123860 (2020)
5. Yıldız, T.A., Jajarmi, A., Yıldız, B., Baleanu, D.: New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete Contin. Dyn. Syst., Ser. S 13(3), 407–428 (2020)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献