Abstract
AbstractIn this paper we establish some new results on trapezium type inequalities of coordinated distance-disturbed $(\ell _{1},h_{1})$
(
ℓ
1
,
h
1
)
–$(\ell _{2},h_{2})$
(
ℓ
2
,
h
2
)
-convex functions of higher orders $(\sigma _{1},\sigma _{2})$
(
σ
1
,
σ
2
)
by using the Katugampola $(k_{1},k_{2})$
(
k
1
,
k
2
)
-fractional integrals. As special cases of our general results, we recapture some earlier proved results.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference38 articles.
1. Alomari, M., Darus, M.: Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities. Int. J. Contemp. Math. Sci. 3(32), 1557–1567 (2008)
2. Alomari, M., Darus, M.: On the Hadamard’s inequality for log-convex functions on the coordinates. J. Inequal. Appl. 2009, Article ID 283147 (2009)
3. Baleanu, D., Mohammed, P.O., Zeng, S.: Inequalities of trapezoidal type involving generalized fractional integrals. Alex. Eng. J. 59(5), 2975–2984 (2020). https://doi.org/10.1016/j.aej.2020.03.039
4. Bei, Y.M., Qi, F.: Some integral inequalities of the Hermite–Hadamard type for log-convex functions on co-ordinates. J. Nonlinear Sci. Appl. 9, 5900–5908 (2016)
5. Bombardelli, M., Varosanec, S.: Properties of h-convex functions related to the Hermite–Hadamard–Fejér inequalities. Comput. Math. Appl. 58(9), 1869–1877 (2009)