Abstract
AbstractIn this work, a technique for finding approximate solutions for ordinary fraction differential equations (OFDEs) of any order has been proposed. The method is a hybrid between Galerkin and collocation methods. Also, this method can be extended to approximate fractional integro-differential equations (FIDEs) and fractional optimal control problems (FOCPs). The spatial approximations with their derivatives are based on shifted ultraspherical polynomials (SUPs). Modified Galerkin spectral method has been used to create direct approximate solutions of linear/nonlinear ordinary fractional differential equations, a system of ordinary fraction differential equations, fractional integro-differential equations, or fractional optimal control problems. The aim is to transform those problems into a system of algebraic equations. That system will be efficiently solved by any solver. Three spaces of collocation nodes have been used through that transformation. Finally, numerical examples show the accuracy and efficiency of the investigated method.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference50 articles.
1. Constantinescu, C.D., Ramirez, J.M., Zhu, W.R.: An application of fractional differential equations to risk theory. Finance Stoch. 23, 1001–1024 (2019)
2. Butzer, P.L., Westphal, U.: An introduction to fractional calculus. In: Hilfer, R. (ed.) Applications of Fractional Calculus in Physics, pp. 1–86. World Scientific, Singapore (2000)
3. Saad, K.M., Gómez-Aguilar, J.F., Almadiy, A.A.: A fractional numerical study on a chronic hepatitis C virus infection model with immune response. Chaos Solitons Fractals 139, Article ID 110062 (2020)
4. Jajarmi, A., Arshad, S., Baleanu, D.: A new fractional modelling and control strategy for the outbreak of Dengue fever. Phys. A, Stat. Mech. Appl. 535, Article ID 122524 (2019)
5. Ionescu, C., Lopes, A., Copot, D., Machado, J.A.T., Bates, J.H.T.: The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul. 51, 141–159 (2017)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献