Author:
Rao Yongsheng,Yussouf Muhammad,Farid Ghulam,Pečarić Josip,Tlili Iskander
Abstract
AbstractThe aim of this paper is to generalize the fractional Hadamard and Fejér–Hadamard inequalities. By using a generalized fractional integral operator containing extended Mittag-Leffler function via monotone function, for convex functions we generalize well known fractional Hadamard and Fejér–Hadamard inequalities. Also we study the error bounds of these generalized Hadamard and Fejér–Hadamard inequalities. We also obtain some published results from presented inequalities.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference26 articles.
1. Abbas, G., Farid, G.: Some integral inequalities of the Hadamard and the Fejér–Hadamard type via generalized fractional integral operator. J. Nonlinear Anal. Optim. 8, 12 pp. (2018)
2. Ahmed, B., Alsaedi, A., Kirane, M., Torebek, B.T.: Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 353, 120–129 (2019)
3. Andrić, M., Farid, G., Pečarić, J.: A generalization of Mittag-Leffler function associated with Opial type inequalities due to Mitrinović and Pečarić. Fract. Calc. Appl. Anal. 21(5), 1377–1395 (2018)
4. Bakula, M.K., Pečarić, J.: Note on some Hadamard-type inequalities. J. Inequal. Pure Appl. Math. 5(3), 74 (2004)
5. Chen, H., Katugampola, U.N.: Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. 446(2), 1274–1291 (2017)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献