Abstract
AbstractIn this paper, we present the monotonicity analysis for the nabla fractional differences with discrete generalized Mittag-Leffler kernels $( {}^{ABR}_{a-1}{\nabla }^{\delta ,\gamma }y )(\eta )$
(
a
−
1
A
B
R
∇
δ
,
γ
y
)
(
η
)
of order $0<\delta <0.5$
0
<
δ
<
0.5
, $\beta =1$
β
=
1
, $0<\gamma \leq 1$
0
<
γ
≤
1
starting at $a-1$
a
−
1
. If $({}^{ABR}_{a-1}{\nabla }^{\delta ,\gamma }y ) ( \eta )\geq 0$
(
a
−
1
A
B
R
∇
δ
,
γ
y
)
(
η
)
≥
0
, then we deduce that $y(\eta )$
y
(
η
)
is $\delta ^{2}\gamma $
δ
2
γ
-increasing. That is, $y(\eta +1)\geq \delta ^{2} \gamma y(\eta )$
y
(
η
+
1
)
≥
δ
2
γ
y
(
η
)
for each $\eta \in \mathcal{N}_{a}:=\{a,a+1,\ldots\}$
η
∈
N
a
:
=
{
a
,
a
+
1
,
…
}
. Conversely, if $y(\eta )$
y
(
η
)
is increasing with $y(a)\geq 0$
y
(
a
)
≥
0
, then we deduce that $({}^{ABR}_{a-1}{\nabla }^{\delta ,\gamma }y )(\eta ) \geq 0$
(
a
−
1
A
B
R
∇
δ
,
γ
y
)
(
η
)
≥
0
. Furthermore, the monotonicity properties of the Caputo and right fractional differences are concluded to. Finally, we find a fractional difference version of the mean value theorem as an application of our results. One can see that our results cover some existing results in the literature.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference34 articles.
1. Cottone, G., Paola, M.D., Santoro, R.: A novel exact representation of stationary colored Gaussian processes (fractional differential approach). J. Phys. A, Math. Theor. 43(8), Article ID 085002 (2010)
2. Meng, F., Zeng, X., Wang, Z.: Impulsive anti-synchronization control for fractional-order chaotic circuit with memristor. Indian J. Phys. 93(9), 1187–1194 (2019)
3. Xu, C.-J., Liao, M.-X., Li, P.-L., Xiao, Q.-M., Yuan, S.: PD9 control strategy for a fractional-order chaotic financial model. Complexity 2019, Article ID 2989204 (2019)
4. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996)
5. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献