Abstract
AbstractThis paper is concerned with the Liouville type theorem for stable weak solutions to the following weighted Kirchhoff equations: $$\begin{aligned}& -M \biggl( \int_{\mathbb{R}^{N}}\xi(z) \vert \nabla_{G}u \vert ^{2}\,dz \biggr){ \operatorname{div}}_{G} \bigl(\xi(z) \nabla_{G}u \bigr) \\& \quad=\eta(z) \vert u \vert ^{p-1}u,\quad z=(x,y) \in \mathbb{R}^{N}=\mathbb{R}^{N_{1}}\times\mathbb{R}^{N_{2}}, \end{aligned}$$
−
M
(
∫
R
N
ξ
(
z
)
|
∇
G
u
|
2
d
z
)
div
G
(
ξ
(
z
)
∇
G
u
)
=
η
(
z
)
|
u
|
p
−
1
u
,
z
=
(
x
,
y
)
∈
R
N
=
R
N
1
×
R
N
2
,
where $M(t)=a+bt^{k}$
M
(
t
)
=
a
+
b
t
k
, $t\geq0$
t
≥
0
, with $a,b,k\geq0$
a
,
b
,
k
≥
0
, $a+b>0$
a
+
b
>
0
, $k=0$
k
=
0
if and only if $b=0$
b
=
0
. Let $N=N_{1}+N_{2}\geq2$
N
=
N
1
+
N
2
≥
2
, $p>1+2k$
p
>
1
+
2
k
and $\xi(z),\eta(z)\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})\setminus\{ 0\}$
ξ
(
z
)
,
η
(
z
)
∈
L
loc
1
(
R
N
)
∖
{
0
}
be nonnegative functions such that $\xi(z)\leq C\|z\|_{G}^{\theta}$
ξ
(
z
)
≤
C
∥
z
∥
G
θ
and $\eta(z)\geq C'\|z\|_{G}^{d}$
η
(
z
)
≥
C
′
∥
z
∥
G
d
for large $\|z\|_{G}$
∥
z
∥
G
with $d>\theta-2$
d
>
θ
−
2
. Here $\alpha\geq0$
α
≥
0
and $\|z\|_{G}=(|x|^{2(1+\alpha)}+|y|^{2})^{\frac{1}{2(1+\alpha)}}$
∥
z
∥
G
=
(
|
x
|
2
(
1
+
α
)
+
|
y
|
2
)
1
2
(
1
+
α
)
. $\operatorname{div}_{G}$
div
G
(resp., $\nabla_{G}$
∇
G
) is Grushin divergence (resp., Grushin gradient). Under some appropriate assumptions on k, θ, d, and $N_{\alpha}=N_{1}+(1+\alpha)N_{2}$
N
α
=
N
1
+
(
1
+
α
)
N
2
, the nonexistence of stable weak solutions to the problem is obtained. A distinguished feature of this paper is that the Kirchhoff function M could be zero, which implies that the above problem is degenerate.
Funder
Basic Research Program of Jiangsu Province
Natural Science Foundation of Shandong Province
Postdoctoral Research Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis