Qualitative analysis of a discrete-time phytoplankton–zooplankton model with Holling type-II response and toxicity

Author:

Khan Muhammad Salman,Samreen MariaORCID,Aydi HassenORCID,De la Sen Manuel

Abstract

AbstractThe interaction among phytoplankton and zooplankton is one of the most important processes in ecology. Discrete-time mathematical models are commonly used for describing the dynamical properties of phytoplankton and zooplankton interaction with nonoverlapping generations. In such type of generations a new age group swaps the older group after regular intervals of time. Keeping in observation the dynamical reliability for continuous-time mathematical models, we convert a continuous-time phytoplankton–zooplankton model into its discrete-time counterpart by applying a dynamically consistent nonstandard difference scheme. Moreover, we discuss boundedness conditions for every solution and prove the existence of a unique positive equilibrium point. We discuss the local stability of obtained system about all its equilibrium points and show the existence of Neimark–Sacker bifurcation about unique positive equilibrium under some mathematical conditions. To control the Neimark–Sacker bifurcation, we apply a generalized hybrid control technique. For explanation of our theoretical results and to compare the dynamics of obtained discrete-time model with its continuous counterpart, we provide some motivating numerical examples. Moreover, from numerical study we can see that the obtained system and its continuous-time counterpart are stable for the same values of parameters, and they are unstable for the same parametric values. Hence the dynamical consistency of our obtained system can be seen from numerical study. Finally, we compare the modified hybrid method with old hybrid method at the end of the paper.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3