Abstract
Abstract
In this article, we discuss a new system of fractional differential equations
$$ \textstyle\begin{cases} D_{0^{+}}^{s_{1}} u(t) + f(t,u(t),v(t))=z_{1}(t), \quad 0< t< 1, \\ D_{0^{+}}^{s_{2}} v(t) + g(t,u(t),v(t))=z_{2}(t), \quad 0< t< 1, \\ u(0)=u(1)=u^{\prime }(0)=u^{\prime }(1)=0, \qquad D_{0^{+}}^{\beta _{1}} u(0)=0, \qquad D_{0^{+}}^{\beta _{1}} u(1)= b_{1} D_{0^{+}}^{\beta _{1}} u(\eta _{1}), \\ v(0)=v(1)=v^{\prime }(0)=v^{\prime }(1)=0, \qquad D_{0^{+}}^{\beta _{2}} v(0)=0, \qquad D_{0^{+}}^{\beta _{2}} v(1)= b_{2} D_{0^{+}}^{\beta _{2}} v(\eta _{2}), \end{cases} $$
{
D
0
+
s
1
u
(
t
)
+
f
(
t
,
u
(
t
)
,
v
(
t
)
)
=
z
1
(
t
)
,
0
<
t
<
1
,
D
0
+
s
2
v
(
t
)
+
g
(
t
,
u
(
t
)
,
v
(
t
)
)
=
z
2
(
t
)
,
0
<
t
<
1
,
u
(
0
)
=
u
(
1
)
=
u
′
(
0
)
=
u
′
(
1
)
=
0
,
D
0
+
β
1
u
(
0
)
=
0
,
D
0
+
β
1
u
(
1
)
=
b
1
D
0
+
β
1
u
(
η
1
)
,
v
(
0
)
=
v
(
1
)
=
v
′
(
0
)
=
v
′
(
1
)
=
0
,
D
0
+
β
2
v
(
0
)
=
0
,
D
0
+
β
2
v
(
1
)
=
b
2
D
0
+
β
2
v
(
η
2
)
,
where $s_{i}=\alpha _{i}+\beta _{i}$
s
i
=
α
i
+
β
i
, $\alpha _{i} \in (1,2]$
α
i
∈
(
1
,
2
]
, $\beta _{i} \in (3,4]$
β
i
∈
(
3
,
4
]
, $z_{i} :[0,1]\rightarrow [0,+\infty )$
z
i
:
[
0
,
1
]
→
[
0
,
+
∞
)
is continuous, $D_{0^{+}}^{\alpha _{i}}$
D
0
+
α
i
and $D_{0^{+}}^{\beta _{i}}$
D
0
+
β
i
are the standard Riemann–Liouville derivatives, $\eta _{i} \in (0,1)$
η
i
∈
(
0
,
1
)
, $b_{i} \in (0, {\eta _{i}}^{1-\alpha _{i}})$
b
i
∈
(
0
,
η
i
1
−
α
i
)
, $i=1,2$
i
=
1
,
2
, and $f,g\in C([0,1]\times \mathbf{R}^{2} , \mathbf{R})$
f
,
g
∈
C
(
[
0
,
1
]
×
R
2
,
R
)
. We establish the existence and uniqueness of solutions for the problem by a recent fixed point theorem of increasing Ψ-$(h,e)$
(
h
,
e
)
-concave operators defined on ordered sets. Furthermore, the results obtained are well proven by means of a specific example.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference40 articles.
1. Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389, 403–411 (2012)
2. Cabada, A., Wang, G.: Nonlinear fractional differential equations with integral boundary value conditions. Appl. Math. Comput. 228, 251–257 (2014)
3. Zhai, C., Wang, F.: Properties of positive solutions for the operator equation $Ax =\lambda x$ and applications to fractional differential equations with integral boundary conditions. Adv. Differ. Equ. 2015, 366 (2015)
4. Zhai, C., Wang, L.: $\varphi - (h,e)$-Concave operators and applications. J. Math. Anal. Appl. 454, 571–584 (2017)
5. El-Shahed, M., Shammakh, W.M.: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Abstr. Appl. Anal. 2011(25), 1363 (2011)