Special function form exact solutions for Jeffery fluid: an application of power law kernel

Author:

Asgir Maryam,Zafar A. A.,Alsharif Abdullah M.,Riaz Muhammad Bilal,Abbas MuhammadORCID

Abstract

AbstractThis research note’s objective is to elaborate on the study of the unsteady MHD natural convective flow of the Jeffery fluid with the fractional derivative model. The fluid flow phenomenon happens between two vertical parallel plates immersed in a porous medium. The one plate is moving with the time-dependent velocity $U_{0} f(t)$ U 0 f ( t ) , while the other is fixed. The mathematical model is presented with the system of the partial differential equation along with physical conditions. Appropriate dimensionless variables are employed in the system of equations, and then this dimensionless model is transformed into the Caputo fractional-order model and solved analytically by the Laplace transform. The exact expressions for velocity and temperature, which satisfy the imposed initial and boundary conditions, are obtained. Memory effects in the fluid are observed which the classical model fails to elaborate. Interesting results are revealed from the investigation of emerging parameters as Grashof number, Prandtl number, relaxation time parameter, Jeffery fluid parameter, Hartmann number, porosity, and fractional parameter. The results are elucidated with the detailed discussion and the assistance of the graphs. For the sake of validation of results, the corresponding solutions for viscous fluids are also obtained and compared with the solutions already existing in the literature.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3