Abstract
AbstractThis research note’s objective is to elaborate on the study of the unsteady MHD natural convective flow of the Jeffery fluid with the fractional derivative model. The fluid flow phenomenon happens between two vertical parallel plates immersed in a porous medium. The one plate is moving with the time-dependent velocity $U_{0} f(t)$
U
0
f
(
t
)
, while the other is fixed. The mathematical model is presented with the system of the partial differential equation along with physical conditions. Appropriate dimensionless variables are employed in the system of equations, and then this dimensionless model is transformed into the Caputo fractional-order model and solved analytically by the Laplace transform. The exact expressions for velocity and temperature, which satisfy the imposed initial and boundary conditions, are obtained. Memory effects in the fluid are observed which the classical model fails to elaborate. Interesting results are revealed from the investigation of emerging parameters as Grashof number, Prandtl number, relaxation time parameter, Jeffery fluid parameter, Hartmann number, porosity, and fractional parameter. The results are elucidated with the detailed discussion and the assistance of the graphs. For the sake of validation of results, the corresponding solutions for viscous fluids are also obtained and compared with the solutions already existing in the literature.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference47 articles.
1. Fetecau, C., Jamil, M., Fetecau, C., Siddique, I.: A note on the second problem of Stokes for Maxwell fluids. Int. J. Non-Linear Mech. 44, 1085–1090 (2009)
2. Vieru, D., Fetecau, C., Fetecau, C.: Flow of a viscoelastic fluid with fractional Maxwell model between two side walls perpendicular to a plate. Appl. Math. Comput. 200, 459–464 (2008)
3. Vieru, D., Rauf, A.: Stokes flows of a Maxwell fluid with wall slip condition. Can. J. Phys. 89(10), 1061–1071 (2012)
4. Dunn, J.E., Rajagopal, K.R.: Fluid of differential type: critical review and thermodynamic analysis. Int. J. Eng. Sci. 33, 689–729 (1995)
5. Pitman Res. Notes in Math. Ser.;K.R. Rajagopal,1993
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献