Author:
Rashid Saima,Jarad Fahd,Noor Muhammad Aslam,Noor Khalida Inayat,Baleanu Dumitru,Liu Jia-Bao
Abstract
AbstractIn this paper, we introduce the generalized $\mathcal{K}$K-fractional integral in the frame of a new parameter $\mathcal{K}>0$K>0. This paper offers some new important inequalities of Grüss type using the generalized $\mathcal{K}$K-fractional integral and associated integral inequalities. Our results with this new integral operator have the abilities to be implemented for the evaluation of many mathematical problems related to the real world applications.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference70 articles.
1. Huang, C.-X., Liu, L.-Z.: Sharp function inequalities and boundedness for Toeplitz type operator related to general fractional singular integral operator. Publ. Inst. Math. 92(106), 165–176 (2012)
2. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)
3. Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Cauchy problems with Caputo Hadamard fractional derivatives. J. Comput. Anal. Appl. 21(4), 661–681 (2016)
4. Nisar, K.S., Rahman, G., Baleanu, D., Mubeen, S., Arshad, M.: The $(k,s)$-fractional calculus of k-Mittag-Leffler function. Adv. Differ. Equ. 2017, Article ID 118 (2017)
5. Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献