Abstract
AbstractIn this paper, we obtain new Hermite–Hadamard-type inequalities for r-convex and geometrically convex functions and, additionally, some new Hermite–Hadamard-type inequalities by using the Hölder–İşcan integral inequality and an improved power-mean inequality.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference26 articles.
1. Bai, R.-F., Qi, F., Xi, B.-Y.: Hermite–Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions. Filomat 27(1), 1–7 (2013) https://doi.org/10.2298/FIL1301001B
2. Chun, L., Qi, F.: Integral inequalities of Hermite–Hadamard type for functions whose third derivatives are convex. J. Inequal. Appl. 2013, 451 (2013) https://doi.org/10.1186/1029-242X-2013-451
3. Dragomir, S.S.: Hermite–Hadamard’s type inequalities for convex functions of selfadjoint operators in Hilbert spaces. Linear Algebra Appl. 436(5), 1503–1515 (2012)
4. Dragomir, S.S.: Refinements of the Hermite–Hadamard integral inequality for log-convex functions. Austral. Math. Soc. Gaz. 28(3), 129–134 (2001)
5. Gill, P.M., Pearce, C.E.M., Pečarić, J.: Hadamard’s inequality for r-convex functions. J. Math. Anal. Appl. 215(2), 461–470 (1997) https://doi.org/10.1006/jmaa.1997.5645
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献