Abstract
AbstractIn this paper, we investigate the dynamical behavior of a two-group SVIR epidemic model with random effect. Firstly, the two-group SVIR epidemic model with random perturbation of natural death rate is established. The existence and uniqueness of positive solution are proved by using stopping time theory and the Lyapunov analysis method. Secondly, a property of the system solution is obtained by using the law of strong numbers and the continuous local martingale. Finally, a new combination of Lyapunov functions is applied. The solution of the model we obtained is oscillating around a steady state if the basic reproduction number is less than one, which is the disease-free equilibrium of the corresponding deterministic model. A numerical simulation is presented to verify our theoretical results.
Funder
National Natural Science Foundation
Ningxia higher education rst-class discipline construction funding project
Major Special project of North Minzu University
Open project of The Key Laboratory of Intelligent Information and Big Data Processing of NingXia Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献