Author:
Ali Muhammad Aamir,Budak Hüseyin,Abbas Mujahid,Chu Yu-Ming
Abstract
AbstractIn this paper, we obtain Hermite–Hadamard-type inequalities of convex functions by applying the notion of$q^{b}$qb-integral. We prove some new inequalities related with right-hand sides of$q^{b}$qb-Hermite–Hadamard inequalities for differentiable functions with convex absolute values of second derivatives. The results presented in this paper are a unification and generalization of the comparable results in the literature on Hermite–Hadamard inequalities.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference26 articles.
1. Dragomir, S.S., Pearce, C.: Selected topics on Hermite–Hadamard inequalities and applications. Mathematics Preprint Archive 2003(3), 463–817 (2003)
2. Pečarić, J.E., Tong, Y.L.: Convex Functions, Partial Orderings, and Statistical Applications. Academic Press, Bostan (1992)
3. Alp, N., Sarıkaya, M.Z., Kunt, M., İşcan, İ.: q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ., Sci. 30(2), 193–203 (2018)
4. Yang, X.-Z., Farid, G., Nazeer, W., Yussouf, M., Chu, M.-C., Dong, C.-F.: Fractional generalized Hadamard and Fejér–Hadamard inequalities for m-convex functions. AIMS Math. 5(6), 6325–6340 (2020)
5. Budak, H., Ali, M.A., Tarhanaci, M.: Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 186(3), 899–910 (2020)
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献