Operator compression with deep neural networks
-
Published:2022-04-09
Issue:1
Volume:2022
Page:
-
ISSN:2731-4235
-
Container-title:Advances in Continuous and Discrete Models
-
language:en
-
Short-container-title:Adv Cont Discr Mod
Author:
Kröpfl Fabian,Maier Roland,Peterseim Daniel
Abstract
AbstractThis paper studies the compression of partial differential operators using neural networks. We consider a family of operators, parameterized by a potentially high-dimensional space of coefficients that may vary on a large range of scales. Based on the existing methods that compress such a multiscale operator to a finite-dimensional sparse surrogate model on a given target scale, we propose to directly approximate the coefficient-to-surrogate map with a neural network. We emulate local assembly structures of the surrogates and thus only require a moderately sized network that can be trained efficiently in an offline phase. This enables large compression ratios and the online computation of a surrogate based on simple forward passes through the network is substantially accelerated compared to classical numerical upscaling approaches. We apply the abstract framework to a family of prototypical second-order elliptic heterogeneous diffusion operators as a demonstrating example.
Funder
european research council göran gustafssons stiftelse för naturvetenskaplig och medicinsk forskning Universität Augsburg
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference65 articles.
1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., TensorFlow, X.Z.: Large-Scale Machine Learning on Heterogeneous Systems (2015) Software available from tensorflow.org 2. Abdulle, A., E, W., Engquist, B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012) 3. Abdulle, A., Henning, P.: A reduced basis localized orthogonal decomposition. J. Comput. Phys. 295, 379–401 (2015) 4. Abdulle, A., Henning, P.: Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comput. 86(304), 549–587 (2017) 5. Altmann, R., Henning, P., Peterseim, D.: Numerical homogenization beyond scale separation. Acta Numer. 30, 1–86 (2021)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|