Some representations of the general solution to a difference equation of additive type

Author:

Stević Stevo

Abstract

Abstract The general solution to the difference equation $$x_{n+1}=\frac {ax_{n}x_{n-1}x_{n-2}+bx_{n-1}x_{n-2}+cx_{n-2}+d}{x_{n}x_{n-1}x_{n-2}},\quad n\in\mathbb{N}_{0}, $$ x n + 1 = a x n x n 1 x n 2 + b x n 1 x n 2 + c x n 2 + d x n x n 1 x n 2 , n N 0 , where $a, b, c\in\mathbb{C}$ a , b , c C , $d\in\mathbb{C}\setminus\{0\}$ d C { 0 } , is presented by using the coefficients, the initial values $x_{-j}$ x j , $j=\overline{0,2}$ j = 0 , 2 , and the solution to the difference equation $$y_{n+1}=ay_{n}+by_{n-1}+cy_{n-2}+dy_{n-3}, \quad n\in\mathbb{N}_{0}, $$ y n + 1 = a y n + b y n 1 + c y n 2 + d y n 3 , n N 0 , satisfying the initial conditions $y_{-3}=y_{-2}=y_{-1}=0$ y 3 = y 2 = y 1 = 0 , $y_{0}=1$ y 0 = 1 . The representation complements known ones of the general solutions to the corresponding difference equations of the first and second order. Besides, the general representation formula is investigated in detail and refined by using the roots of the characteristic polynomial $$P_{4}(\lambda )=\lambda ^{4}-a\lambda ^{3}-b\lambda ^{2}-c\lambda -d $$ P 4 ( λ ) = λ 4 a λ 3 b λ 2 c λ d of the linear equation. The following cases are considered separately: (1) all the roots of the polynomial are distinct; (2) there is a unique double root of the polynomial; (3) there is a triple root of the polynomial and one simple; (4) there is a quadruple root of the polynomial; (5) there are two distinct double roots of the polynomial.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference51 articles.

1. de Moivre, A.: Miscellanea analytica de seriebus et quadraturis. J. Tonson & J. Watts, London (1730) (in Latin)

2. Euler, L.: Introductio in Analysin Infinitorum. Tomus Primus, Lausannae (1748) (in Latin)

3. Boole, G.: A Treatsie on the Calculus of Finite Differences, 3rd edn. Macmillan & Co., London (1880)

4. Brunacci, V.: Corso di Matematica Sublime, Tomo I, Calcolo delle Differenze Finite e sue Applicazioni. Presso Pietro Allegrini, Firenze (1804) (in Italian)

5. Fort, T.: Finite Differences and Difference Equations in the Real Domain. Clarendon, Oxford (1948)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3