Author:
Lv Yangyang,Chen Lijuan,Chen Fengde
Abstract
AbstractIn this paper, we propose a single species logistic model with feedback control and additive Allee effect in the growth of species. The basic aim of the paper is to discuss how the additive Allee effect and feedback control influence the above model’s dynamical behaviors. Firstly, the existence and stability of equilibria are discussed under three different cases, i.e., weak Allee effect, strong Allee effect, and the critical case. Secondly, we prove the occurrence of saddle-node bifurcation and transcritical bifurcation with the help of Sotomayor’s theorem. The above dynamical behaviors are richer and more complex than those in the traditional logistic model with feedback control. We find that both Allee effect and feedback control can increase the species’ extinction property. We also reveal some new bifurcation phenomena which do not exist in the single-species model with feedback control (Fan and Wang in Nonlinear Anal., Real World Appl. 11(4):2686–2697, 2010 and Lin in Adv. Differ. Equ. 2018:190, 2018).
Funder
the National Natural Science Foundation of China
the Natural Science Foundation of Fujian Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference38 articles.
1. Fan, Y.H., Wang, L.L.: Global asymptotical stability of a logistic model with feedback control. Nonlinear Anal., Real World Appl. 11(4), 2686–2697 (2010)
2. Lin, Q.F.: Stability analysis of a single species logistic model with Allee effect and feedback control. Adv. Differ. Equ. 2018(1), 190 (2018)
3. Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1948)
4. Gopalsamy, K., Weng, P.X.: Feedback regulation of logistic growth. Int. J. Appl. Math. Comput. Sci. 16(1), 177–192 (1993)
5. Fang, S.L., Jiang, M.H.: Stability and Hopf bifurcation for a regulated logistic growth model with discrete and distributed delays. Commun. Nonlinear Sci. Numer. Simul. 14, 4292–4303 (2009)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献