Convergence of second-order in time numerical discretizations for the evolution Navier-Stokes equations

Author:

Berselli Luigi C.ORCID,Spirito Stefano

Abstract

AbstractWe prove the convergence of certain second-order numerical methods to weak solutions of the Navier–Stokes equations satisfying, in addition, the local energy inequality, and therefore suitable in the sense of Scheffer and Caffarelli–Kohn–Nirenberg. More precisely, we treat the space-periodic case in three space dimensions and consider a full discretization in which the classical Crank–Nicolson method (θ-method with $\theta =1/2$ θ = 1 / 2 ) is used to discretize the time variable. In contrast, in the space variables, we consider finite elements. The convective term is discretized in several implicit, semi-implicit, and explicit ways. In particular, we focus on proving (possibly conditional) convergence of the discrete solutions toward weak solutions (satisfying a precise local energy balance) without extra regularity assumptions on the limit problem. We do not prove orders of convergence, but our analysis identifies some numerical schemes, providing alternate proofs of the existence of “physically relevant” solutions in three space dimensions.

Funder

Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference35 articles.

1. Albritton, D., Brué, E., Colombo, M.: Non-uniqueness of Leray solutions of the forced Navier-Stokes equations. Ann. Math. (2) 196(1), 415–455 (2022)

2. Baker, G.A.: Projection Methods for Boundary-Value Problems for Equations of Elliptic and Parabolic Type with Discontinuous Coefficients. ProQuest LLC, Ann Arbor (1973). Thesis (Ph.D.)–Cornell University

3. Berselli, L.C.: Weak solutions constructed by semi-discretization are suitable: the case of slip boundary conditions. Int. J. Numer. Anal. Model. 15, 479–491 (2018)

4. Mathematics in Science and Engineering;L.C. Berselli,2021

5. Berselli, L.C., Fagioli, S., Spirito, S.: Suitable weak solutions of the Navier-Stokes equations constructed by a space-time numerical discretization. J. Math. Pures Appl. 9(125), 189–208 (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3