1. Knuth, D.E., Buckholtz, T.J.: Computation of tangent, Euler, and Bernoulli numbers. Math. Comput. 21, 663–688 (1967)
2. Kim, D.S., Kim, T.: Some p-adic integrals on
Z
p
$\mathbb{Z}_{p}$
associated with trigonometric functions. Russ. J. Math. Phys. 25, 300–308 (2018)
3. Liu, G.D.: Identities and congruences involving higher-order Euler–Bernoulli numbers and polynomials. Fibonacci Q. 39, 279–284 (2001)
4. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)
5. Kim, D.S., Park, K.H.: Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under
S
3
$S_{3}$
. Appl. Math. Comput. 219, 5096–5104 (2013)