Abstract
AbstractHIV patients are vulnerable to developing active visceral leishmaniasis (VL). To understand this complication, we studied a mathematical model for HIV and visceral leishmaniasis coinfection. In this approach, we reckoned two distinct equilibria: the disease-free and the endemic equilibria. The local and global stability of the disease-free equilibrium were thoroughly investigated. To further support the qualitative findings, we performed simulations to quantify the changes of the dynamical behavior of the full model for variation of relevant parameters. Increasing the rate of VL recovery ($\phi _{1}$
ϕ
1
), the recovery rate for VL–HIV Co-infection ($\phi _{2}$
ϕ
2
), removing reservoirs ($c_{1}$
c
1
), minimizing the contact rate ($\beta _{h}$
β
h
) are important in controlling the transmission of individual and co-infection disease of VL and HIV. In conclusion, possible measures should be implemented to reduce the number of infected individuals. Therefore, we recommend that policy makers and stakeholders incorporate these measures during planing and implementation phases to control the transmission of VL–HIV co-infection.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献