Two unconditionally stable difference schemes for time distributed-order differential equation based on Caputo–Fabrizio fractional derivative

Author:

Qiao Haili,Liu Zhengguang,Cheng AijieORCID

Abstract

AbstractWe consider distributed-order partial differential equations with time fractional derivative proposed by Caputo and Fabrizio in a one-dimensional space. Two finite difference schemes are established via Grünwald formula. We show that these two schemes are unconditionally stable with convergence rates $O(\tau ^{2}+h^{2}+ \Delta \alpha ^{2})$O(τ2+h2+Δα2) and $O(\tau ^{2}+h^{4}+\Delta \alpha ^{4})$O(τ2+h4+Δα4) in discrete $L^{2}$L2, respectively, where Δα, h, and τ are step sizes for distributed-order, space, and time variables, respectively. Finally, the performance of difference schemes is illustrated via numerical examples.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3