Dynamic of interactive model for information propagation across social networks media

Author:

Zhang Yaming,Liu Fei,Koura Yaya H.ORCID,Wang Hao

Abstract

AbstractControlling information diffusion or propagation through social networks can be challenging when dealing with information related to a subject of highest interest for the public. The complexity level of control depends on subject importance, users’ dynamic, and network structure. When two published messages or pieces of information share the same interest for targeted readers, analyzing their propagation dynamic for control and prediction is of great interest. This article proposes to model, based on a modified interactive system with Holling type functional response, the dynamic of underlying relationship between two broadcasted messages traveling through social networks media. We showed in the qualitative analysis of the proposed model that system could be stable at certain conditions, and the model-system exhibited very rich dynamical behavior. Numerical simulation results validated theoretical analyses and suggested adapting resources harvesting and assimilation efficiency for an authoritative message to stabilize the system and control the dissemination of information in a closed environment.

Funder

National Social Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference26 articles.

1. Morgan & Claypool synthesis lectures on data management, Oct. 2013

2. Morstatter, F., Kumar, S., Liu, H., Maciejewski, R.: Understanding Twitter data with TweetXplorer. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’13, pp. 1482–1485. ACM, New York (2013)

3. Netten, N., van Someren, M.: Identifying segments for routing emergency response dialogues. In: 5th International Conference on Information Systems for Crisis Response and Management (ISCRAM) (2008)

4. Wang, F., Wang, H., Xu, K.: Diffusive logistic model towards predicting information diffusion in online social networks (2001). arXiv:1108.0442

5. Yang, J., Counts, S.: Predicting the speed, scale, and range of information diffusion in Twitter. In: Proceedings of the Fourth International Conference on Weblogs and Social Media (2010)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3