Quadratic covariations for the solution to a stochastic heat equation with space-time white noise

Author:

Sun XichaoORCID,Yan Litan,Yu Xianye

Abstract

AbstractLet $u(t,x)$u(t,x) be the solution to a stochastic heat equation $$ \frac{\partial }{\partial t}u=\frac{1}{2} \frac{\partial ^{2}}{\partial x^{2}}u+ \frac{\partial ^{2}}{\partial t\,\partial x}X(t,x),\quad t\geq 0, x\in { \mathbb{R}} $$tu=122x2u+2txX(t,x),t0,xR with initial condition $u(0,x)\equiv 0$u(0,x)0, where is a space-time white noise. This paper is an attempt to study stochastic analysis questions of the solution $u(t,x)$u(t,x). In fact, it is well known that the solution is a Gaussian process such that the process $t\mapsto u(t,x)$tu(t,x) is a bi-fractional Brownian motion with Hurst indices $H=K=\frac{1}{2}$H=K=12 for every real number x. However, the many properties of the process $x\mapsto u(\cdot ,x)$xu(,x) are unknown. In this paper we consider the generalized quadratic covariations of the two processes $x\mapsto u(\cdot ,x),t\mapsto u(t,\cdot )$xu(,x),tu(t,). We show that $x\mapsto u(\cdot ,x)$xu(,x) admits a nontrivial finite quadratic variation and the forward integral of some adapted processes with respect to it coincides with “Itô’s integral”, but it is not a semimartingale. Moreover, some generalized Itô formulas and Bouleau–Yor identities are introduced.

Funder

NSFC

Shanghai Municipal Education Commission

Natural Science Foundation of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference38 articles.

1. Alós, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29, 766–801 (2001)

2. Balan, R., Kim, D.: The stochastic heat equation driven by a Gaussian noise: germ Markov property. Commun. Stoch. Anal. 2, 229–249 (2008)

3. Bouleau, N., Yor, M.: Sur la variation quadratique des temps locaux de certaines semimartingales. C. R. Acad. Sci., Sér. 1 Math. 292, 491–494 (1981)

4. Da Prato, G., Jentzen, A., Röckner, M.: A mild Itô formula for SPDEs (2012). arXiv:1009.3526

5. Springer Proc. Math. Stat.;A. Deya,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3