Abstract
Abstract
A nonlinear degenerate parabolic equation related to the $p(x)$p(x)-Laplacian
$$ {u_{t}}= \operatorname{div} \bigl({b(x)} { \bigl\vert {\nabla a(u)} \bigr\vert ^{p(x) - 2}}\nabla a(u) \bigr)+\sum _{i=1}^{N}\frac{\partial b_{i}(u)}{ \partial x_{i}}+c(x,t) -b_{0}a(u) $$ut=div(b(x)|∇a(u)|p(x)−2∇a(u))+∑i=1N∂bi(u)∂xi+c(x,t)−b0a(u) is considered in this paper, where $b(x)|_{x\in \varOmega }>0$b(x)|x∈Ω>0, $b(x)|_{x \in \partial \varOmega }=0$b(x)|x∈∂Ω=0, $a(s)\geq 0$a(s)≥0 is a strictly increasing function with $a(0)=0$a(0)=0, $c(x,t)\geq 0$c(x,t)≥0 and $b_{0}>0$b0>0. If $\int _{\varOmega }b(x)^{-\frac{1}{p ^{-}-1}}\,dx\leq c$∫Ωb(x)−1p−−1dx≤c and $\vert \sum_{i=1}^{N}b_{i}'(s) \vert \leq c a'(s)$|∑i=1Nbi′(s)|≤ca′(s), then the solutions of the initial-boundary value problem is well-posedness. When $\int _{\varOmega }b(x)^{-(p(x)-1)}\,dx<\infty $∫Ωb(x)−(p(x)−1)dx<∞, without the boundary value condition, the stability of weak solutions can be proved.
Funder
Natural Science Foundation of Fujian Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference30 articles.
1. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)
2. Antontsev, S., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 52, 19–36 (2006)
3. Rajagopal, K., Ruzicka, M.: Mathematical modelling of electro-rheological fluids. Contin. Mech. Thermodyn. 13, 59–78 (2001)
4. Aboulaich, R., Meskine, D., Souissi, A.: New diffusion models in image processing. Comput. Math. Appl. 56, 874–882 (2008)
5. Levine, S., Chen, Y.M., Stanich, J.: Image Restoration Via NonstandArd Diffusion, Department of Mathematics and Computer Science, Duquesne University (2004)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献